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The problem of nonisothermal Knudsen-gas motion in a channel of finite dimen- 
sions with sufficiently general boundary conditions is considered. The parti- 
cular case of gas motion in a plane finite channel is investigated. 

The problem of free-molecular gas motion in a channel of finite length was first solved 
in [i], in which the isothermal flow of gas into a vacuum was investigated. Assuming that 
reflection of molecules from the channel wall conforms to the cosine law, Clausing derived 
an integral equation for the collision density of molecules with the wall [i]. In [2], 
various methods of solving the Clausing equation were considered, and diffuse--specular 
boundary conditions on the isothermal gas flow were taken into account [3]. In [4], expres- 
sions were obtained for the probability that molecules would enter channels of various geom- 
etry [2]. In [5], the convergence of a variational method for solving the Clausing equa- 
tion was verified. 

In these works isothermal free-molecular flow of a gas into a vacuum was considered. 
The aim of the present work is to solve the problem of nonisothermal motion of a Knudsen 
gas in a channel of finite length for sufficiently general boundary conditions. 

Formulation of the Problem 

Consider the free-molecular motion of a single-component gas in a channel of length 
I joining two volumes; d is the hydraulic radius of the channel [2]. The z axis of the 
coordinate system coincides with the channel axis. The volumes are considerably larger 
than the channel dimensions. The gas in the volumes is in thermodynamic equilibriumat 
the temperatures TI and T2 and densities nl and n=, respectively, i.e., the distribution 
function of the gas molecules in the volumes is absolutely Maxwellian 
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The distribution function of the molecules reflected from the wall, f+(v), is taken 
to be arbitrary, and approximated by a function containing a certain number of free parame- 
ters [6]. Introducing the dimensionless velocity of molecular motion c 
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t h e  f u n c t i o n  f + ( c )  can  be  expanded ,  by a n a l o g y  w i t h  t he  method of  [ 7 ] ,  i n  powers  of  c 
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where  f o ( v ,  z) i s  an a b s o l u t e l y  M a x w e l l i a n  d i s t r i b u t i o n  f u n c t i o n ;  Ai ,  B, and Di a r e  c o e f f i -  
c i e n t s  of the expansion, depending on the coordinate z. In the present case 
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Fig. i. Dependence of ~ on 
log L for different tangential- 
momentum accommodation factors: 
~ = 1  (1 ) ,  0.6 ( 2 ) ,  0.3 (3), 0 
(4). 

The density n+(z) and the coefficients in the expansion of f+ can be found from the condi- 
tion of wall impermeability and the definition of the accommodation factors of the corres- 
ponding moments of the distribution function [3, 6]. Physical considerations determine 
the choice of T+(z). 

Obtaining the specific form of f+, macroscopic parameters of the gas in the channel 
may be calculated, in particular, the reduced gas flow rate 

G + = G/Go, (6) 

where G is the mass flow rate of gas through the channel; Go is the gas mass flow rate 
from the first volume into vacuum through a hole of the same cross section as the channel 

s. (7) Go= 4 ~ ~m , ) 

In the nonisothermal case, the thermomolecular pressure difference (TPD) is of inter- 
est [8]. Here a first-order steady state is observed [9], i.e., there is no mass transfer 
through the channel. The following formula was proposed in [i0] to describe TPD 

Pl _ ( Tt ~' = Q__L, (8) 

where Qp and QT are the reduced volume gas flow rates due to the pressure and temperature 
gradients, respectively [i0, ii]. In the case of infinitely long channels, it is found 
that y= 1/2 for diffuse and diffuse--specular boundary conditions in free-molecular condi- 
tions [i0, ii]. However, experiments [12, 13] indicate a value of the TPD coefficient 
significantly different from this for various gases. 

Use of Bubnov--Galerkin Method 

Using the wall-impermability condition and the definitions of the Knudsen accommoda- 
tion factors ~ [3, 6], it is simple to obtain a system of K integral equations for the K 
terms of the expansion in Eq. (4). These equations are inhomogeneous Fredholm integral 
equations of the second kind, and may be solved by variational methods [2, 14]. In the 
limiting case K=I, the Clausing equation [i, 2, 5] for a diffuse law of gas--wall interac- 
tion is obtained. 

The resulting system of K integral equations will be solved by the Bubnov--Galerkin 
method [14]. The form of the trial functions is first chosen. In the general case, P 
variable constants (P~K) are introduced, and a corresponding system of P algebraic equa- 
tions is obtained 

P 

~ H u a  s = F * ,  i =  1 . . . .  , P.  
i=l 

(9) 

TABLE I. Pass-Through Probability for Plane Slits 

Slit No. I I Gas 
[17] H2 Pie Ne Ar Xe 

I 
2 ] 0,0357 0,0374 
3 ] 0,0428 0,0454 0,0460 0,0418 0,0389 

i 

Calc. for 
c z = l  

0,0523 
0,0520 
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Fig. 2. Dependence of GT + on log L: a=l (i), 0 (2)~ 
m =i.01 (I), 1.05 (II). 

Fig. 3. Dependence of TPD index on temperature ratio in 
volumes for channels of different length with incomplete 
tangential-momentum accommodations: ~ = 0.8 (I), 0.6 (2); 
L = i0 (continuous curves), i (dashed curves). 

The quantities Hij depend on the accommodation factors ~, the reduced length of the 
channel L = I/d, and the temperature ratio of the volumes T = T~/TI. The free terms F i depend 
on the same parameters, and are also linear functions of the molecular-density ratio for 
the volumes, ko = n2/nl. Using the solution of Eq. (9), the following expression may be 
written for the reduced flow rate G + 

G + = Io - - ko  l / ~ +  liai + I2a2 + . . .  + Ipap , (10) 

where I j  depend on ly  on a~, L, and z.  S u b s t i t u t i n g  the  e x p l i c i t  form of  a j  i n t o  Eq. (10) ,  
and pe r fo rming  s imple  t r a n s f o r m a t i o n s ,  t he  f o l l o w i n g  formula  i s  ob t a ined  f o r  G + 

where 
G + = N - -  Mko ]/'T,, 

M = M ( a r  L, ~), N =: N(a~, L, ~). 

( 1 1 )  

(12) 

From Eq. (ii), an equation to describe TPD is obtained 

(13) 

Comparison with Eq. (8) yields an expression for the TPD coefficient y in free-molecular 
conditions in a channel of finite length 

1 |n (M/N)  �9 ~- -  (14) 
2 ln(~) 

Using diffuse boundary conditions, Eq. (14) gives y = 1/2. The same result is obtained 
for the diffuse--specular scheme of boundary conditions of [2]. In contrast to the diffuse 
and diffuse--specular models of gas--surface interaction, the expansion in Eq. (4) gives a 
value of less than 1/2 for the TPD coefficient, while Eq. (13) coincides in structure with 
the empirical formula proposed to describe the TPD experiments in [12]. 
Gas Motion in a Plane Channel 

As an illustration of the application of the present boundary-condition model, consider 
gas motion in a channel proved by two infinitely wide plane plates of length I. In this case 
the hydraulic radius d of the channel is equal to the distance between the plates [2]. 
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t" = t o o  + A~(z)c~), (15)  
i.e., the accommodation of the tangential momentum at the wall is assumed to be incomplete. 
In this case, K= 2, and a system of two integral equations is obtained 
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0 

(16) 

+ ( z - -  x)~l 5/~ " 

The following notation has been adopted here 

(z) = 2~+ (z) V'~+ (z) . 
TIt 

V-~n+ (z) Az (z) ~,2 (z) 
r e ( z )  

i 

1l l 

T+ (z) .= T+(z____) ; 
T~ 

and ~ i s  t h e  t a n g e n t i a l - m o m e n t u m  a c c o m m o d a t i o n  f a c t o r .  

The e x p r e s s i o n  o b t a i n e d  f o r  t h e  r e d u c e d  f l o w  r a t e  G + i s  t h e n  

L L 

6+=V- I+LB- -L - - koVU-+- -~  n(z) I--V 1+(L_z)~ - ~  
O 

m (z) dz 
V~+ (z) 1 + (L - z)~ 

(17) 

(18) 

(19) 

(20) 

In the case of complete accommodation of the tangential momentum (a = i), for flow into a 
vacuum (ko = 0), the system in Eq. (16) yields the traditional Clausing equation, and the 
flow rate G + coincides with the probability that a gas molecule will pass through the 
channel [2, 5]. 

To ensure the correct choice of the form of functions n(z) and m(z) without checking 
the convergence of the Bubnov--Galerkin method, the system for isothermal flow into a 
vacuum in Eq. (16) was solved numerically by the Krylov--Bogolyubov method [15]. The accura- 
cy of the calculation was no worse than 0.01% for ~ taking values from 0 to i. The results 
show that, to good accuracy, n(z) may be regarded as linear and m(z) as constant~ The coin- 
cidence of the accurate and variational solutions is no worse than 0.1%. 

In all the calculations, T+(z) was taken to be a linear function of z. The calcula- 
tions were carried out on a BESM-6 computer. 

Discussion of Results 

Consider isothermal gas motion in a channel under the action of a pressure difference. 
In this case, ko = P2/Pz, and M and N in Eq. (ii) depend only on L and a. Since when ko = 1 
there must be no mass transfer through the channel, it is possible to write 

G + = Mp (I -- ko). (21) 

The subscript P denotes motion under the action of the pressure difference alone; Mp coin- 
cides, in physical meaning, with the probability that a gas molecule will pass through the 
channel [2]. The dependence of Mp on log L is shown in Fig~ 1 for different values of the 
tangential-momentum accommodation at the walls. With decrease in ~, I~ rises for any chan- 
nel length, but remains less than unity when L r 0. If the set of diffuse--specular boundary 
conditions of [2] is used, the probability that a particle will pass through a channel of 
any length is unity in the case of completely specular reflection. Hence, the absence of 
tangential-momentum accommodation is not completely specular reflection. Of course, the 
diffusivity factor c in the diffuse--specular boundary conditions cannot be interpreted as 
the tangential-momentum accommodation factor a. In the case of complete accommodation of 
the molecules, i.e., a = i, the results obtained agree completely with the data of [2, 5]. 
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It is of interest to compare theory with experiment [17]. It is evident from Table 1 
that the experimental probability that the molecule will pass through the channel is less 
than the theoretical value. This discrepancy may be attributed to the roughness of the chaN- 
nel walls, as a result of which there is a decrease in the probability. 

Consider nonisothermal gas motion in a channel when the pressure in the system remains 
constant. In this case, ko = I/T. The reduced gas flow rate is 

G + = N -  M . - - 1  (22) 

The subscript T denotes motion under the action of a temperature difference alone. Consider- 
ing the dependence of GT + on log L shown in Fig. 2, it is evident that the gas flow rate 
rises with increase in the temperature drop at the ends of the channel and with decrease in 
the channel length. Together with a, GT+ decreases; the effect of incomplete tangential- 
momentum accommodation is larger for longer channels, i.e., larger surface with which the 
molecules interact. Whereas the values of GT+(a = i) and GT+(a = 0) are practically equal 
for T=I.01 and L=0.1, for L=I00 the difference amounts to 34%. 

In Fig. 3, the TPD index y is plotted as a function of the temperature ratio T in the 
volumes. Note the weak dependence of y on T for any a. For a = 0.8-1, the maximum change 
in y with T is less than 1% and for a = 0 it is less than 3%. Diffuse scattering of gas 
molecules on the channel is seen to correspond to maximum TPD. It is evident from Fig. 3 
that y decreases for incomplete tangential-momentum accommodation, which is in qualitative 
agreement with the experiments of [12]. 

NOTATION 

k, Boltzmann constant; m, molecular mass; v, absolute velocity of molecular motion; 
fl, f2, gas-molecule distribution functions in volumes; n+(z), density of molecular colli- 
sions with wall at point z; T+(z), wall temperature at point z; S, channel cross-sectional 
area; PI, P2, gas pressure in first and second volumes; y, universal TPD index. 
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PHASE SLIP AND HEAT TRANSFER TO THE LIQUID IN 

FILM BOILING OF A CRYOGENIC LIQUID IN PISTON FLOW 

A. A. Kurilenko, S. R. Dymenko, 
and Yu. S. Kochelaev 

UDC 536,24 

Published data are examined and results are given from a survey of experiments 
on phase slip and heat transfer to liquids. 

It is now firmly established that heat transfer and hydraulic resistance in film boil- 
ing in a pipe are substantially dependent on the structure of the two-phase flow. 

When a pipe is cooled by a cryogenic liquid in a heat-transfer device in a power plant, 
one usually finds [1-3] piston and dispersed modes of flow. These have been examined [i, 2] 
for liquid nitrogen, while dispersed flow has been examined [4] for hydrogen, nitrogen, and 
argon. It has been shown [1-4] that the speeds of liquid and vapor differ substantially in 
the dispersed mode, i.e., slip occurs for the two-phase flow. In the piston mode, it is 
assumed [i, 2, 5] that the phase speeds are equal, i.e., that the slip ratio is Uv/U ~=I. 

In most instances, the dispersed mode arises by decomposition of the piston mode in 
parts of the pipe fairly far from the inlet. Therefore, we assume that slip in the dis- 
persed mode is one of the reasons for slip arising in piston mode, since sudden change in 
the phase velocities is unlikely when piston flow breaks up in a real process. It is neces- 
sary to assume constant slip in piston mode because the available studies [i, 2, 5] included 
no measurements of the volume vapor content, while the latter cannot be determined by solv- 
ing a system of one-dimensional conservation equations written for each of the phases with- 
out the assumption of slip. 

The difference between the mass-mean phase speeds explains why the few available meas- 
urements [6] on heat transfer to flowing hydrogen in pipes were not included in [1, 2, 5]. 
The results of [6] were also not incorporated in studies on dispersed flow. In [6] there 
were high mass flow speeds, and in most instances the flow was of piston type. One there- 
fore concludes that the piston-flow models of [i, 2, 4] are rarely applicable, while the 
correct choice of slip is of primary importance in the analysis of data and in deriving 
general relationships. 

The system of one-dimensional conservation equations for the piston model for steady- 
state flow takes the following form provided that the mass-average vapor temperature is 
equal to the saturation temperature (any superheating of the vapor is localized in a narrow 
layer near the wall, whose thickness is much less than the thickness of the vapor film): 

dx ~d 
dz = Gr (qw-- qt ] /1 - -  @), (1) 

_ ( 1 - - x ) G  all 
qw ] / 1 - - ~ d  dz @ q e ( i ~ - - i h  ), (2) 

= T ~(p), ( 3 )  

xG : pllttt ~Y, (4) 

( 1 - - x ) G = p  u ( I - - ~ ) F ,  (5) 

(6) qvs=  (q I -[- qz ~ I r i - -  % 
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